Skip to Content

Vercel AI SDK

The @gensx/vercel-ai package provides Vercel AI SDK compatible components for GenSX, allowing you to use Vercel’s AI SDK with GenSX’s component model.

Installation

To install the package, run the following command:

npm install @gensx/vercel-ai

You’ll also need to install the relevant providers from the Vercel AI SDK:

npm install @ai-sdk/openai

Then import the components you need from the package:

import { generateText, generateObject } from "@gensx/vercel-ai";

Supported components

Component
Description
generateTextGenerate complete text responses from language models
generateObjectGenerate complete structured JSON objects from language models
streamTextStream text responses from language models
streamObjectStream structured JSON objects from language models
embedGenerate embeddings for a single text input
embedManyGenerate embeddings for multiple text inputs
generateImageGenerate images from text prompts

Component Reference

generateText

The generateText component generates complete text responses from language models, waiting for the entire response before returning.

import { generateText } from "@gensx/vercel-ai"; import { openai } from "@ai-sdk/openai"; const result = await generateText({ prompt: "Write a poem about a cat", model: openai("gpt-4.1-mini"), }); console.log(result.text);
Props

The generateText component accepts all parameters from the Vercel AI SDK’s generateText function:

  • prompt (required): The text prompt to send to the model
  • model (required): The language model to use (from Vercel AI SDK)
  • Plus any other parameters supported by the Vercel AI SDK
Return Type

Returns a complete text string containing the model’s response.

generateObject

The generateObject component generates complete structured JSON objects from language models, with type safety through Zod schemas.

import { generateObject } from "@gensx/vercel-ai"; import { openai } from "@ai-sdk/openai"; import { z } from "zod"; const userSchema = z.object({ user: z.object({ name: z.string(), age: z.number(), interests: z.array(z.string()), contact: z.object({ email: z.string().email(), phone: z.string().optional(), }), }), }); const result = await generateObject({ prompt, schema: userSchema, model: openai("gpt-4.1-mini"), }); console.log(result.object);
Props

The generateObject component accepts all parameters from the Vercel AI SDK’s generateObject function:

  • prompt (required): The text prompt to send to the model
  • model (required): The language model to use (from Vercel AI SDK)
  • schema: A Zod schema defining the structure of the response
  • output: The output format (“object”, “array”, or “no-schema”)
  • Plus any other optional parameters supported by the Vercel AI SDK
Return Type

Returns a structured object matching the provided schema.

streamText

The streamText component streams text responses from language models, making it ideal for chat interfaces and other applications where you want to show responses as they’re generated.

import { streamText } from "@gensx/vercel-ai"; import { openai } from "@ai-sdk/openai"; const result = streamText({ messages: [ { role: "system", content: "You are a helpful assistant", }, { role: "user", content: "write a children's book about AGI", }, ], model: openai("gpt-4.1-mini"), }); for await (const chunk of result.textStream) { console.log(chunk); }
Props

The streamText component accepts all parameters from the Vercel AI SDK’s streamText function:

  • prompt (required): The text prompt to send to the model
  • model (required): The language model to use (from Vercel AI SDK)
  • Plus all other parameters supported by the Vercel AI SDK
Return Type

Returns a streaming response that can be consumed token by token.

streamObject

The streamObject component streams structured JSON objects from language models, allowing you to get structured data with type safety.

import { streamObject } from "@gensx/vercel-ai"; import { openai } from "@ai-sdk/openai"; import { z } from "zod"; // Define a schema for the response const recipeSchema = z.object({ recipe: z.object({ name: z.string(), ingredients: z.array(z.string()), steps: z.array(z.string()), }), }); const result = streamObject({ prompt: "Generate a recipe for chocolate chip cookies", schema: recipeSchema, model: openai("gpt-4.1-mini"), }); for await (const chunk of result.partialObjectStream) { console.log(chunk); }
Props

The streamObject component accepts all parameters from the Vercel AI SDK’s streamObject function:

  • prompt (required): The text prompt to send to the model
  • model (required): The language model to use (from Vercel AI SDK)
  • schema: A Zod schema defining the structure of the response
  • output: The output format (“object”, “array”, or “no-schema”)
  • Plus all other parameters supported by the Vercel AI SDK
Return Type

Returns a structured object matching the provided schema.

embed

The embed component generates embeddings for a single text input, which can be used for semantic search, clustering, and other NLP tasks.

import { embed } from "@gensx/vercel-ai"; import { openai } from "@ai-sdk/openai"; import * as gensx from "@gensx/core"; const result = await embed({ value: "the cat jumped over the dog", model: openai.embedding("text-embedding-3-small");, }); console.log(result.embedding)
Props

The embed component accepts all parameters from the Vercel AI SDK’s embed function:

  • value (required): The text to generate an embedding for
  • model (required): The embedding model to use (from Vercel AI SDK)
  • Plus any other optional parameters supported by the Vercel AI SDK
Return Type

Returns a vector representation (embedding) of the input text.

embedMany

The embedMany component generates embeddings for multiple text inputs in a single call, which is more efficient than making separate calls for each text.

import { embedMany } from "@gensx/vercel-ai"; import { openai } from "@ai-sdk/openai"; const texts = [ "the cat jumped over the dog", "the dog chased the cat", "the cat ran away", ]; const result = await embedMany({ values: texts, model: openai.embedding("text-embedding-3-small"), }); console.log(result.embeddings);
Props

The EmbedMany component accepts all parameters from the Vercel AI SDK’s embedMany function:

  • values (required): Array of texts to generate embeddings for
  • model (required): The embedding model to use (from Vercel AI SDK)
  • Plus any other optional parameters supported by the Vercel AI SDK
Return Type

Returns an array of vector representations (embeddings) for the input texts.

generateImage

The generateImage component generates images from text prompts using image generation models.

import { generateImage } from "@gensx/vercel-ai"; import { openai } from "@ai-sdk/openai"; const result = await generateImage({ prompt: "a bear walking through a lush forest", model: openai.image("dall-e-3"), }); console.log(result);
Props

The generateImage component accepts all parameters from the Vercel AI SDK’s experimental_generateImage function:

  • prompt (required): The text description of the image to generate
  • model (required): The image generation model to use (from Vercel AI SDK)
  • Plus any other optional parameters supported by the Vercel AI SDK
Return Type

Returns an object containing information about the generated image, including its URL.

Usage with Different Models

The Vercel AI SDK supports multiple model providers. Here’s how to use different providers with GenSX components:

// OpenAI import { openai } from "@ai-sdk/openai"; const openaiModel = openai("gpt-4.1"); // Anthropic import { anthropic } from "@ai-sdk/anthropic"; const anthropicModel = anthropic("claude-sonnet-4-20250514"); // Gemini import { google } from "@ai-sdk/google"; const googleModel = google("gemini-2.5-flash-preview-05-20");

For more information on the Vercel AI SDK, visit the official documentation.

Last updated on